当前位置:高中试题 > 数学试题 > 线面角 > 在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集...
题目
题型:不详难度:来源:
在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是(  )
A.{t|
2


5
5
≤t≤2


3
}
B.{t|
2


5
5
≤t≤2}
C.{t|2≤t≤2


3
}
D.{t|2≤t≤2


2
}

答案
设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点
分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则
∵A1MD1E,A1M⊄平面D1AE,D1E⊂平面D1AE,
∴A1M平面D1AE.同理可得MN平面D1AE,
∵A1M、MN是平面A1MN内的相交直线
∴平面A1MN平面D1AE,
由此结合A1F平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上上的动点.
设直线A1F与平面BCC1B1所成角为θ
运动点F并加以观察,可得
当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ=
A1B1
B1M
=2;
当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ=
A1B1


2
2
B
1
M
=2


2

∴A1F与平面BCC1B1所成角的正切取值范围为[2,2


2
]
故选:D
核心考点
试题【在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集】;主要考察你对线面角等知识点的理解。[详细]
举一反三
如图,平面四边形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,将△ABD沿对角线BD折起,得四面体ABCD,使得点A在平面BCD上的射影在线段BC上,设AD与平面BCD所成角为θ,则sinθ=______.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=


7
,PA=


3
,∠ABC=120°,G为线段PC的中点.
(1)证明:PA平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD,PA⊥底面ABCD,ABCD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.
题型:不详难度:| 查看答案
已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AB与平面ADC所成角的正弦值为______.
题型:不详难度:| 查看答案
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.