当前位置:高中试题 > 数学试题 > 线线角 > 已知四面体OABC中,OA、OB、OC两两相互垂直,,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D...
题目
题型:不详难度:来源:
已知四面体OABC中,OA、OB、OC两两相互垂直,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D,使四面体ABCD是正三棱锥;③存在点D,使CD与AB垂直并相等;④存在无数个点D,使点O在四面体ABCD的外接球面上.则其中正确命题的序号是(  )
A.①②            B.②③            C.①③            D.③④
答案
D
解析

试题分析:

对于①,∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=2,当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2,四面体ABCD的三条棱DA、DB、DC两两垂直,此时点D,使四面体ABCD有三个面是直角三角形,故①不正确;对于②,由①知AC=BC=,AB=2,使AB=AD=BD,此时存在点D,CD=,使四面体C-ABD是正三棱锥,故②不正确;对于③,取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;对于④,先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可,∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确,故正确的命题有③④,故选D.
点评:本题考查棱锥的结构特征,同时考查了空间想象能力,转化与划归的思想,以及构造法的运用,属于中档题
核心考点
试题【已知四面体OABC中,OA、OB、OC两两相互垂直,,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.1
题型:不详难度:| 查看答案
是直线,是两个不同的平面,下列命题成立的是(    )
A.若,则
B.若,则
C.若, 则
D.若,则

题型:不详难度:| 查看答案
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
题型:不详难度:| 查看答案
是平面内的一条定直线,是平面外的一个定点,动直线经过点且与角,则直线与平面的交点的轨迹是
A.圆B.椭圆C.双曲线D.抛物线

题型:不详难度:| 查看答案
如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.