当前位置:高中试题 > 数学试题 > 线线角 > 如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).(1)求证...
题目
题型:不详难度:来源:
如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD..
答案
(1)见解析(2)λ=
解析
(1)证明:∵AB⊥平面BCD,∴AB⊥CD.
∵CD⊥BC,且AB∩BC=B,∴CD⊥平面ABC.
=λ(0<λ<1),
∴不论λ为何值,恒有EF∥CD.
∴EF⊥平面ABC,EF平面BEF.
∴不论λ为何值恒有平面BEF⊥平面ABC.
(2)解:由(1)知,BE⊥EF,∵平面BEF⊥平面ACD,∴BE⊥平面ACD.∴BE⊥AC.
∵BC=CD=1,∠BCD=90°,∠ADB=60°,
∴BD=,AB=tan60°=.
∴AC=.
由AB2=AE·AC,得AE=.∴λ=.
故当λ=时,平面BEF⊥平面ACD
核心考点
试题【如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).(1)求证】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.

(1)求证:C1E∥平面ADF;
(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?
题型:不详难度:| 查看答案
如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:

(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
题型:不详难度:| 查看答案
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.

(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.
题型:不详难度:| 查看答案
给出下列命题:
①若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
③若两条平行直线中的一条垂直于直线m,那么另一条直线也与直线m垂直;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,真命题是________.(填序号)
题型:不详难度:| 查看答案
如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.