当前位置:高中试题 > 数学试题 > 面面垂直 > 如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面PBD....
题目
题型:不详难度:来源:
如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:
(1)PA平面BDE;
(2)平面PAC⊥平面PBD.
答案
证明:(1)连结AC交BD于点O,连结OE.
∵四边形ABCD是菱形,∴AO=CO.
∵E为PC的中点,∴EOPA.
∵PA⊄平面BDE,EO⊂平面BDE,
∴PA平面BDE.
(2)∵PA⊥平面ABCD,BD⊂平面ABCD,
∴PA⊥BD,
∵四边形ABCD是菱形,
∴BD⊥AC.∵AC∩PA=A,
∴BD⊥平面PAC,
∵BD⊂平面PBD,
∴平面PAC⊥平面PBD.
核心考点
试题【如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面PBD.】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.
题型:不详难度:| 查看答案
如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H必在(  )
A.直线AB上B.直线BC上C.直线CA上D.△ABC内部
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足______时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
题型:不详难度:| 查看答案
在四棱锥S-ABCD中,已知ABCD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:ABl.
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD的底面是矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD,
(1)求证:BC⊥侧面PAB;
(2)求证:侧面PAD⊥侧面PAB.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.