当前位置:高中试题 > 数学试题 > 线面垂直 > 如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1...
题目
题型:0110 月考题难度:来源:
如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)求证:AB⊥平面BCC1B1
(Ⅱ)求四棱锥A-BCQP的体积。
答案
(Ⅰ)证明:在正方形中,因为CD=AD-AB-BC=5,
所以三棱柱的底面三角形ABC的边AC=5,
因为AB=3,BC=4,所以,,所以,AB⊥BC,
因为四边形为正方形,,所以

所以,AB⊥平面
(Ⅱ)解:因为AB⊥平面
所以,AB为四棱锥A-BCQP的高,
因为四边形BCQP为直角梯形,且BP=AB=3,CQ=AB+BC=7,
所以,梯形BCQP的面积为
所以,四棱锥A-BCQP的体积
核心考点
试题【如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
将两块三角板按图甲方式拼好(A、B、C、D四点共面),其中∠B=∠D=90°,∠ACD=30°,∠ACB=45°,AC=2,现将三角板ACD沿AC折起,使点D在平面ABC上的射影O恰好在AB上(如图乙)。
(1)求证:AD⊥平面BDC;
(2)求二面角D-AC-B的大小;
(3)求异面直线AC与BD所成角的大小。
题型:0117 模拟题难度:| 查看答案
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD。
(1)证明:BM⊥平面SMC;
(2)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求的值.
题型:广东省模拟题难度:| 查看答案
α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论: ①m⊥n;②α⊥β;③n⊥β;④m⊥α. 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题(    )。
题型:同步题难度:| 查看答案
如图,在正方体ABCD-A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1
题型:同步题难度:| 查看答案
如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC的中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.
题型:同步题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.