当前位置:高中试题 > 数学试题 > 线面垂直 > 如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=2。(1)求证:AO⊥平面BCD;(2)求异面直线AB与CD所成角...
题目
题型:福建省高考真题难度:来源:
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=2。
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的大小;
(3)求点E到平面ACD的距离。
答案
解:(1)证明:连结OC
∵BO=DO,AB=AD,
∴AO⊥BD
∵BO=DO,BC=CD,
∴CO⊥BD
在△AOC中,由已知可得AO=1,CO=
而AC=2,
∴AO2+CO2=AC2
∴∠AOC=90°,即AO⊥OC

∴AB⊥平面BCD。
(2)取AC的中点M,连结OM、ME、OE,由E为BC的中点知ME∥AB,OE∥DC
∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角
在△OME中,
是直角△AOC斜边AC上的中线


∴异面直线AB与CD所成角的大小为(3)设点E到平面ACD的距离为h
=
·S△ACD=·AO·S△CDE
在△ACD中,CA=CD=2,AD=
∴S△ACD=
而AO=1,S△CDE=
∴h=
∴点E到平面ACD的距离为
核心考点
试题【如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=2。(1)求证:AO⊥平面BCD;(2)求异面直线AB与CD所成角】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD,
(Ⅰ)求异面直接PD与BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大小;
(Ⅲ)设点M在棱PC上,且=λ,问λ为何值时,PC⊥平面BMD。
题型:山东省高考真题难度:| 查看答案
如图,已知两个正四棱锥P-ABCD与Q-ABCD的高都是2,AB=4。
(1)证明PQ⊥平面ABCD;
(2)求异面直线AQ与PB所成的角;
(3)求点P到平面QAD的距离。
题型:湖南省高考真题难度:| 查看答案
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点,
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求BD与平面ADMN所成的角。
题型:浙江省高考真题难度:| 查看答案
在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点,
(Ⅰ)求证:CM⊥EM;
(Ⅱ)求DE与平面EMC所成角的正切值。
题型:浙江省高考真题难度:| 查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6。
(1)求证:BD⊥平面PAC;
(2)求二面角P-BD-A的大小。
题型:陕西省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.