当前位置:高中试题 > 数学试题 > 线线、线面平行 > 设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若mβ,α⊥β,则m⊥α;②若α∥β,mα,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥...
题目
题型:河南省模拟题难度:来源:
设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若mβ,α⊥β,则m⊥α;②若α∥β,mα,则m∥β;
③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β。
其中正确命题的序号是[     ]
A.①③
B.①②
C.③④
D.②③
答案
D
核心考点
试题【设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若mβ,α⊥β,则m⊥α;②若α∥β,mα,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥】;主要考察你对线线、线面平行等知识点的理解。[详细]
举一反三
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,CE=3,O为BC的中点,AO∥面EFD,
(Ⅰ)求BD的长;
(Ⅱ)求证:面EFD⊥面BCED;
(Ⅲ)求平面DEF与平面ACEF相交所成锐角二面角的余弦值.
题型:山东省模拟题难度:| 查看答案
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点。
(1)求证:DC//平面PAB;
(2)求证:PO⊥平面ABCD;
(3)求证:PA⊥BD。
题型:河南省模拟题难度:| 查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O。将菱形ABCD沿对角线AC折起,使BD=
3,得到三棱锥B-ACD,
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得CN=4,并证明你的结论。
题型:北京模拟题难度:| 查看答案
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2,
(1)求证:C1D∥平面ABB1A1
(2)求二面角D-A1C1-A的余弦值。
题型:贵州省模拟题难度:| 查看答案
如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的大小。
题型:广西自治区模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.