当前位置:高中试题 > 数学试题 > 线线、线面平行 > 如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1....
题目
题型:不详难度:来源:
如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求二面角C1-AB-C的正切值.
答案
证明:(1)在直三棱柱ABC-A1B1C1
∵底面三边长AC=3,AB=5,BC=4,
∴AC⊥BC,(1分)
又直三棱柱ABC-A1B1C1中AC⊥CC1
且BC∩CC1=C
BC∩CC1⊂平面BCC1B1
∴AC⊥平面BCC1B1
而BC1⊂平面BCC1B1
∴AC⊥BC1
(2)设CB1与C1B的交点为E,连接DE,(5分)
∵D是AB的中点,E是BC1的中点,
∴DEAC1,(7分)
∵DE⊂平面CDB1,AC1⊄平面CDB1
∴AC1平面CDB1.(8分)
(3)过点C作CF⊥AB于F,连接C1F(9分)
由已知C1C垂直平面ABC,则∠C1FC为二面角C1-AB-C的平面角(11分)
在Rt△ABC中,AC=3,AB=5,BC=4,则CF=
12
5
(12分)
又CC1=AA1=4
∴tan∠C1FC=
5
3
(13分)
∴二面角C1-AB-C的正切值为
5
3
(14分)
核心考点
试题【如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.】;主要考察你对线线、线面平行等知识点的理解。[详细]
举一反三
已知四棱锥S-ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=a,M、N分别为AB、SC中点.
(Ⅰ)求四棱锥S-ABCD的表面积;
(Ⅱ)求证:MN平面SAD.
题型:不详难度:| 查看答案
如图,在正三棱柱ABC-A1B1C1中,BC=BB1,点D是BC的中点.
(I)求证:A1C1平面AB1C;
(Ⅱ)求证:△AB1D为直角三角形;
(Ⅲ)若三棱锥B1-ACD的体积为


3
3
,求棱BB1的长.
题型:不详难度:| 查看答案
如图,PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点
(1)求证:MN平面PAD;
(2)若∠PAD=45°,求证:MN⊥平面PCD.
题型:不详难度:| 查看答案
如图(1)所示,在直角梯形ABCP中,BCAP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:AP平面EFG;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C-EFG的体积.
题型:不详难度:| 查看答案
如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和直线CD所成角的余弦值;
(2)在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.