当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图所示,在三棱锥P—ABC中,PA⊥底面ABC,(1)证明:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由....
题目
题型:不详难度:来源:
如图所示,在三棱锥P—ABC中,PA⊥底面ABC,

(1)证明:平面PBE⊥平面PAC;
(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由.
答案
(1)证明略(2)取CD的中点F,则点F即为所求
解析
(1)因为PA⊥底面ABC,所以PA⊥BE.
又因为△ABC是正三角形,且E为AC的中点,
所以BE⊥CA.
又PA∩CA=A,所以BE⊥平面PAC.
因为BE平面PBE,所以平面PBE⊥平面PAC.
(2) 取CD的中点F,则点F即为所求.
因为E、F分别为CA、CD的中点,所以EF∥AD.
又EF平面PEF,AD平面PEF,
所以AD∥平面PEF.
核心考点
试题【如图所示,在三棱锥P—ABC中,PA⊥底面ABC,(1)证明:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
)如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯 

形,∠BAD=∠FAB=90°,BCAD,BEFA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C、D、F、E四点是否共面?为什么?
(3)设AB=BE,证明:平面ADE⊥平面CDE.
题型:不详难度:| 查看答案
 如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD="   "

3∶1,过E、F、G的平面交AD于H,连接EH.
(1)求AH∶HD;
(2)求证:EH、FG、BD三线共点.
题型:不详难度:| 查看答案
 如图所示,正方体ABCD—A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由.
题型:不详难度:| 查看答案
如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.
题型:不详难度:| 查看答案
如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.