当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°,AD=,EF=2.(1)求证:AE∥平面DCF;(2)当AB的长为...
题目
题型:不详难度:来源:
如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,
BE∥CF,∠BCF=∠CEF=90°,AD=,EF=2.
(1)求证:AE∥平面DCF;
(2)当AB的长为何值时,二面角A—EF—C的大小为60°?
答案
(1)证明略 (2) 当AB为时,二面角A—EF—C的大小为60°
解析
方法一 (1) 过点E作EG⊥CF交CF于G,

连接DG.可得四边形BCGE为矩形,
又四边形ABCD为矩形,
所以AD   EG,从而四边形ADGE为平行四边形,
故AE∥DG.
因为AE平面DCF,DG平面DCF,
所以AE∥平面DCF.
(2) 过点B作BH⊥EF交FE的延长线于H,连接AH.
由平面ABCD⊥平面BEFC,AB⊥BC,
得AB⊥平面BEFC,
从而AH⊥EF,所以∠AHB为二面角A—EF—C的平面角.
在Rt△EFG中,因为EG=AD=,EF=2,
所以∠CFE=60°,FG=1,
又因为CE⊥EF,所以CF=4,
从而BE=CG=3.
于是BH=BE·sin∠BEH=.
因为AB=BH·tan∠AHB=×=
所以当AB为时,二面角A—EF—C的大小为60°.
方法二 如图所示,以点C为坐标原点,以CB、CF和CD所在直线分别作为x轴、y轴和z轴,建立空间直角坐标系C—xyz.

设AB=a,BE=b,CF=c,
则C(0,0,0),A(,0,a),
B(,0,0),E(,b,0),F(0,c,0).
(1)=(0,b,-a),=(,0,0),=(0,b,0),
所以·=0,·=0,从而CB⊥AE,CB⊥BE.
AE∩BE=E,所以CB⊥平面ABE.
因为CB⊥平面DCF,
所以平面ABE∥平面DCF,AE平面ABE.
故AE∥平面DCF.
(2)因为=(-,c-b,0),=(,b,0).
·=0,||=2,
所以 解得
所以E(,3,0),F(0,4,0).
设n=(1,y,z)与平面AEF垂直,
则n·=0,n·=0,解得n=(1,,).
又因为BA⊥平面BEFC,=(0,0,a),
所以|cos〈n, 〉|=
解得a=.
所以当AB为时,二面角A—EF—C的大小为60°.
核心考点
试题【如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°,AD=,EF=2.(1)求证:AE∥平面DCF;(2)当AB的长为】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:
(1)直线EF∥平面ACD;
(2)平面EFC⊥平面BCD.
题型:不详难度:| 查看答案
一个多面体的直观图和三视图(正视图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.求证:

(1)MN∥平面ACC1A1
(2)MN⊥平面A1BC.
题型:不详难度:| 查看答案
正方体ABCD-A1B1C1D1中,P为面A1B1C1D1的中心,求证:PAPB1.
题型:不详难度:| 查看答案
如图所示,在长方体OABC-O1A1B1C1中,|OA|="2," |AB|=3,|AA1|=3,MOB1BO1的交点,则M点的坐标是____________.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,EPC的中点.求证:PA∥平面EDB.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.