当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。求证:平面ACD⊥平面PAC;求异面直线PC与BD所成角的余...
题目
题型:不详难度:来源:
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=

求证:平面ACD⊥平面PAC;
求异面直线PC与BD所成角的余弦值;
设二面角A—PC—B的大小为,试求的值。
答案

(1) 略
(2)
(3)
解析
(1)略;(2)
(3)过A作AE⊥PC交PC于E,过E作EF⊥PC交PB于F,连结AE。则二面角A—PC—B的平面角为∠AEF即∠AEF=
在Rt⊿APC中,PC=
在⊿PBC中,PB=,BC=2,
在Rt⊿PEF中,
在⊿PAF中,PF=
在⊿AEF中,
核心考点
试题【ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。求证:平面ACD⊥平面PAC;求异面直线PC与BD所成角的余】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分12分)
棱锥的底面正方形,侧棱的中点在底面内的射影恰好是正方形的中心顶点在截面的射影恰好是的重心

(1)求直线与底面所成角的正切值;
(2)设,求此四棱锥过点的截面面积.
题型:不详难度:| 查看答案
(12分)
已知斜三棱柱在底面上的射影恰为的中点又知

(1)求证平面
(2)求到平面的距离;
(3)求二面角的余弦值;
题型:不详难度:| 查看答案
(12分)
已知四棱锥中,平面,底面是直角梯形,的重心,的中点,上,且

(1)求证:
(2)当二面角的正切值为多少时,
平面
(3)在(2)的条件下,求直线与平面成角
的正弦值;
题型:不详难度:| 查看答案
如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的是(     )

A  AC⊥BD      B  AC∥截面PQMN  C  AC=BD     D  PM与BD所成角为450
题型:不详难度:| 查看答案
正四棱锥的侧棱长为2,侧棱与底面所成角为600,则棱锥的体积为(     )
A  3                B  6                C  9               D  18
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.