当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,不一定成立的为A.AC⊥BEB.AC//截面PQMNC.异面直线PM与BD所成的角为45°D.A...
题目
题型:不详难度:来源:
如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,不一定成立的为
A.AC⊥BEB.AC//截面PQMN
C.异面直线PM与BD所成的角为45°D.AC=BD

答案
D
解析

分析:首先由正方形中的线线平行推导线面平行,再利用线面平行推导线线平行,这样就把AC、BD平移到正方形内,即可利用平面图形知识做出判断.
解答:解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,
则PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正确;
由PQ∥AC可得AC∥截面PQMN,故B正确;
异面直线PM与BD所成的角等于PM与QM所成的角,故C正确;
综上D是错误的.
故选D.
点评:本题主要考查线面平行的性质与判定.
核心考点
试题【如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,不一定成立的为A.AC⊥BEB.AC//截面PQMNC.异面直线PM与BD所成的角为45°D.A】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三

AD=2,PA=2,PD=2,∠PAB=60°。
(1)证明:AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的大小。
题型:不详难度:| 查看答案
(本小题满分12分)如图,在四棱锥中,,底面为正方形,分别是的中点.
(1) 求证: ;
(2)求二面角的大小;
题型:不详难度:| 查看答案
((本小题满分12分)
如图所示,正方形和矩形所在的平面相互垂直,已知.
(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.
题型:不详难度:| 查看答案
(本小题满分13分)
如图,已知四棱锥PABCD的底面是菱形,∠BCD=60°,点EBC边的中点,ACDE交于点OPO⊥平面ABCD.
(Ⅰ)求证:PDBC
(Ⅱ)若AB=6,PC=6,求二面角PADC的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PBDE所成角的余弦值.
题型:不详难度:| 查看答案
(本小题满分14分)已知四面体中,,平面平面,分别为棱的中点。

(1)求证:平面;
(2)求证:;
(3)若内的点满足∥平面,设点构成集合,试描述点集的位置(不必说明理由)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.