当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD(1)问BC边上是否存在Q点,使⊥,说明理由.(2)问当Q点惟一,且cos...
题目
题型:不详难度:来源:
(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使,说明理由.
(2)问当Q点惟一,且cos<>=时,求点P的位置.

答案
解:(1)如答图9-6-2所示,建立空间直角坐标系A一xyz,设P(0,0,z),
D(0,a,0),Q(1,y,0),

=(1,y,-z),=(-1,a-y,0),且
·-1+y(a-y)=0y2-ay+1=0.
∴△=a2-4.
当a>2时,△>0,存在两个符合条件的Q点;
当a=2时,△=0,存在惟一一个符合条件的Q点;
当a<2时,△<0,不存在符合条件的Q点.
(2)当Q点惟一时,由5题知,a=2,y=1.
∴B(1,0,0),=(-1,0,z),=(-1,1,0).
∴cos<>===
∴z=2.即P在距A点2个单位处.
解析

核心考点
试题【(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD(1)问BC边上是否存在Q点,使⊥,说明理由.(2)问当Q点惟一,且cos】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
题型:不详难度:| 查看答案
(本小题满分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,

(1)求证: AD⊥面SBC;
(2)求二面角A-SB-C的大小.
题型:不详难度:| 查看答案
如下图所示,哪些是正四面体的展开图,其序号是(   )

(1)(3)           (2)(4)            (3)(4)         (1)(2)
题型:不详难度:| 查看答案
如图,在三棱锥P—ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC内,∠MPA=60°,∠MPB=45°,则∠MPC的度数为(  )
A.30°B.45°C. 75°D.60°

题型:不详难度:| 查看答案
(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.