当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图所示,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是(...
题目
题型:不详难度:来源:
如图所示,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是(    )
 
A.3            B.4       C.5            D.6
答案
C
解析
解:AC交BD于O,
作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,
∴PN=PE,
∵四边形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E为AB的中点,
∴N在AD上,且N为AD的中点,
NF过O点,
即P、O重合,
∵AN∥BF,AN=BF,
∴四边形ANFB是平行四边形,
∴NF=AB,
∵菱形ABCD,
∴AC⊥BD,OA=AC=3,BO=BD=4,
由勾股定理得:AB2= AO2+BO2 =5,
故答案为:5.
核心考点
试题【如图所示,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是(】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图所示,多面体EF﹣ABCD中,底面ABCD为等腰梯形,AB∥CD,四边形ACFE为矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求证:BC⊥AF
(2)求平面BDF与平面CDF所成夹角的余弦值.
题型:不详难度:| 查看答案
(本题满分14分)如图, 在直三棱柱中,,
,点的中点.

⑴求证:
⑵求证:平面
⑶求二面角的正切值.
题型:不详难度:| 查看答案
在棱长为的正方体中,点分别是棱的中点,则点到平面的距离是(       ).
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分13分)如图,正方形所在平面与三角形所在平面相交于平面,且

(1)求证:平面
(2)求凸多面体的体积.
题型:不详难度:| 查看答案
(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,,E是SA的中点.

(1)求证:平面BED平面SAB;
(2)求直线SA与平面BED所成角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.