当前位置:高中试题 > 数学试题 > 解三角形应用 > 在△ABC中,A、B、C所对的边分别为a、b、c,且满足a+b+c=2+1,sinA+sinB=2sinC,则c=______;若C=π3,则△ABC的面积S=...
题目
题型:不详难度:来源:
在△ABC中,A、B、C所对的边分别为a、b、c,且满足a+b+c=


2
+1,sinA+sinB=


2
sinC,则c=______;若C=
π
3
,则△ABC的面积S=______.
答案
依题意及正弦定理得a+b=


2
c,且a+b+c=


2
+1,
因此c+


2
c=


2
+1,c=1,
当C=
π
3
时,c2=a2+b2-2abcosC=a2+b2-ab=1,
∴(a+b)2-3ab=1.
又a+b=


2
,因此2-3ab=1,
∴ab=
1
3

则△ABC的面积S=
1
2
absinC=
1
2
×
1
3
sin
π
3
=


3
12

故答案为:1;


3
12
核心考点
试题【在△ABC中,A、B、C所对的边分别为a、b、c,且满足a+b+c=2+1,sinA+sinB=2sinC,则c=______;若C=π3,则△ABC的面积S=】;主要考察你对解三角形应用等知识点的理解。[详细]
举一反三
在锐角三角形中,边a、b是方程x2-2


3
x+2=0的两根,角A、B满足:2sin(A+B)-


3
=0,求角C的度数,边c的长度及△ABC的面积.
题型:不详难度:| 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且B=
π
3
,cosC=
1
3
,b=3


6
.( I)求c的值;( II)求△ABC的面积.
题型:不详难度:| 查看答案
在锐角△ABC中,已知cosA=


10
10
cosC=


5
5
,BC=3.求:
(1)△ABC的面积;(2)AB边上的中线CD的长.
题型:不详难度:| 查看答案
在△ABC中,tanB=
1
2
,tanC=
1
3
,且最长边为


5

(1)求A;
(2)△ABC中最短的边长
题型:不详难度:| 查看答案
△ABC中,若∠B=30°,AB=2


3
,AC=


3
,则BC=______.
题型:金山区一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.