当前位置:高中试题 > 数学试题 > 函数极值与最值 > 某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5 )的税收.设每件产品的售价为x元(35≤x≤4...
题目
题型:江苏省月考题难度:来源:
某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5 )的税收.设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例.已知每件产品的日售价为40.元时,日销售量为10件.
(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值.
答案
解:(1)设日销售量为,则

则日利润
(2)
①当2≤a≤4时,33≤a+31≤35,当35<x<41时,L"(x)<0
∴当x=35时,L(x)取最大值为10(5﹣a)e5
②当4<a≤5时,35≤a+31≤36,
令L"(x)=0,得x=a+31,易知当x=a+31时,L(x)取最大值为10e9﹣a
综合上得
核心考点
试题【某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5 )的税收.设每件产品的售价为x元(35≤x≤4】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)求函数f(x)的单调增区间;
(3)若对任意x>0,不等式f(x)≥﹣(c﹣1)4+(c﹣1)2﹣c+9恒成立,求c的取值范围.
题型:江苏省月考题难度:| 查看答案
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
题型:江苏省月考题难度:| 查看答案
设m、t为实数,函数,f(x)的图象在点M(0,f(0))处的切线的斜率为1.
(1)求实数m的值;
(2)若对于任意x∈[﹣1,2],总存在t,使得不等式f(x)≤2t成立,求实数t的取值范围;设方程x2+2tx﹣1=0的两个实数根为a,b(a<b),若对于任意x∈[a,b],总存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,记g(t)=f(x2)﹣f(x1),当时,求实数t的值.
题型:江苏省月考题难度:| 查看答案
设函数f(x)=lnx+ln(2﹣x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为,求a的值.
题型:安徽省期末题难度:| 查看答案
已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有 成立.
题型:安徽省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.