当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=ex-x (e为自然对数的底数).(1)求f(x)的最小值;(2)不等式f(x)>ax的解集为P,若M={x|12≤x≤2}且M∩P≠∅,求实...
题目
题型:河南模拟难度:来源:
已知函数f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2}且M∩P≠∅,求实数a的取值范围;(3)已知n∈N﹡,且Sn=∫tn[f(x)+x]dx(t为常数,t≥0),是否存在等比数列{bn},使得b1+b2+…bn=Sn;若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.
答案
(1)f′(x)=ex-1                                              
由f′(x)=0得x=0
当x>0时f′(x)>0.当x<0时,f′(x)<0
∴f(x)在(0,+∞)上增,在(-∞,0)上减
∴f(x)min=f(0)=1                 
(2)∵M∩P≠∅,∴f(x)>ax在区间[
1
2
,2]
有解
由f(x)>ax得ex-x>ax
a<
ex
x
-1在[
1
2
,2]
上有解                  
令  g(x)=
ex
x
-1,  x∈[
1
2
,2]

g′(x)=
(x-1)ex
x2

g(x)在[
1
2
,1]
上减,在[1,2]上增
g(
1
2
)=2


e
-1,g(2)=
e2
2
-1
,且g(2)>g(
1
2
)

g(x)max=g(2)=
e2
2
-1

a<
e2
2
-1
                                                            
(3)设存在等比数列{bn},b1+b2+…+bn=Sn
∵Sn=∫tn[f(x)+x]dx=en-et
∴b1=e-et                     
n≥2时bn=Sn-Sn-1=(e-1)en-1
当t=0时bn=(e-1)en-1,数{bn}为等比数列
t≠0时
b2
b1
b3
b2
,则数{bn}不是等比数列
∴当t=0时,存在满足条件的数bn=(e-1)en-1满足题意
核心考点
试题【已知函数f(x)=ex-x (e为自然对数的底数).(1)求f(x)的最小值;(2)不等式f(x)>ax的解集为P,若M={x|12≤x≤2}且M∩P≠∅,求实】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
设函数f(x)=1nx+
1
x-2
+ax(a≥0)

(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)若f(x)在(0,1]上的最大值为
1
2
,求a的值
题型:安徽模拟难度:| 查看答案
将边长为a的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
题型:不详难度:| 查看答案
已知函数f(x)=
1
3
x3+
a-2
2
x2-2ax-3.
(Ⅰ)当a=1时,求函数f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的单调增区间.
题型:不详难度:| 查看答案
已知函数f(x)=sinx(x≥0),g(x)=ax(x≥0).
(I)若f(x)≤g(x)恒成立,求实数a的取值范围;
(II)当a取(I)中最小值时,求证:g(x)-f(x)≤
1
6
x3
题型:不详难度:| 查看答案
已知函数:f(x)=x-(a+1)lnx-
a
x
(a∈R)
g(x)=
1
2
x2+ex-xex

(1)当x∈[1,e]时,求f(x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.
题型:东城区模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.