当前位置:高中试题 > 数学试题 > 函数极值与最值 > 将边长为a的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最...
题目
题型:不详难度:来源:
将边长为a的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
答案
设小正方形的边长为x,则盒底的边长为a-2x,
由于a-2x也要>0,则x∈(0,
a
2
),
且方盒是以边长为a-2x的正方形作底面,高为x的正方体,
其体积为V=x(a-2x)2,(x∈(0,
a
2
))

V"=(a-2x)(a-6x),令V"=0,则x1=
a
2
x2
=
a
6

x1=
a
2
∉(0,
a
2
)
,且对于x∈(0,
a
6
),V′>0
x∈(
a
6
a
2
),V′<0

∴函数V在点x=
a
6
处取得极大值,由于问题的最大值存在,
∴V(
a
6
)=
2a3
27
即为容积的最大值,此时小正方形的边长为
a
6
核心考点
试题【将边长为a的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
1
3
x3+
a-2
2
x2-2ax-3.
(Ⅰ)当a=1时,求函数f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的单调增区间.
题型:不详难度:| 查看答案
已知函数f(x)=sinx(x≥0),g(x)=ax(x≥0).
(I)若f(x)≤g(x)恒成立,求实数a的取值范围;
(II)当a取(I)中最小值时,求证:g(x)-f(x)≤
1
6
x3
题型:不详难度:| 查看答案
已知函数:f(x)=x-(a+1)lnx-
a
x
(a∈R)
g(x)=
1
2
x2+ex-xex

(1)当x∈[1,e]时,求f(x)的最小值;
(2)当a<1时,若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范围.
题型:东城区模拟难度:| 查看答案
用半径为R的圆铁皮剪一个内接矩形,再将内接矩形卷成一个圆柱(无底、无盖),问使矩形边长为多少时,其体积最大?
题型:不详难度:| 查看答案
定义在(0,+∞)上的函数f(x)的导函数f"(x)<0恒成立,且f(4)=1,若f(x+y)≤1,则x2+y2+2x+2y的最小值是______
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.