当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点横坐标为xn,则log2014x1+log2014x2+log2014x3+…log2014x2...
题目
题型:不详难度:来源:
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点横坐标为xn,则log2014x1+log2014x2+log2014x3+…log2014x2013的值为(  )
A.-log20142013B.-1
C.-1+log20142013D.1
答案
由题意可得P(1,1)
对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn
∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)
令y=0可得,xn=
n
n+1

∴x1x2…x2013=
1
2
2
3
3
4
2013
2014

∴log2014x1+log2014x2+log2014x3+…log2014x2013=log2014(x1x2…x2013
=log2014 
1
2014
=-1
故选B.
核心考点
试题【设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点横坐标为xn,则log2014x1+log2014x2+log2014x3+…log2014x2】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
f(x)=x(x-c)2在x=1处有极小值,则实数c=______.
题型:不详难度:| 查看答案
已知函数f(x)=
x2+ax+1
x-1
(a≠-2)
的图象关于点(b,1)对称.
(I)求a的值;
(II)求函数f(x)的单调区间;
(II)设函数g(x)=x3-3c2x-2c(c≤-1).若对任意x1∈[2,4],总存在x2∈[-1,0],使得f(x1)=g(x2)成立,求c的取值范围.
题型:不详难度:| 查看答案
若曲线f(x)=cosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则b=(  )
A.-1B.0C.1D.2
题型:不详难度:| 查看答案
曲线y=2x2在点(1,2)处的切线方程为______.
题型:不详难度:| 查看答案
已知曲线C:f(x)=x3-ax+a,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.