当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:对于任意的x∈R都有f(x)+f(-x)=0,且x=1时f(x)取极小值-23.(1)f(x...
题目
题型:不详难度:来源:
设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:对于任意的x∈R都有f(x)+f(-x)=0,且x=1时f(x)取极小值-
2
3

(1)f(x)的解析式;
(2)当x∈[-1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:
答案
(1)因为,∀x∈R,f(-x)=-f(x)成立,所以:b=d=0,
由:f"(1)=0,得3a+c=0,由:f(1)=-
2
3
,得 a+c=-
2
3
,解之得:a=
1
3
,c=-1从而,
函数解析式为:f(x)=
1
3
x3-x

(2)由于,f"(x)=x2-1,
设任意两数x1,x2∈[-1,1]是函数f(x)图象上两点的横坐标,
则这两点的切线的斜率分别是:k1=f"(x1)=x12-1,k2=f"(x2)=x22-1
又因为:-1≤x1≤1,-1≤x2≤1,所以,k1≤0,k2≤0,得:k1k2≥0知:k1k2≠-1
故当x∈[-1,1]是函数f(x)图象上任意两点的切线不可能垂直
核心考点
试题【设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:对于任意的x∈R都有f(x)+f(-x)=0,且x=1时f(x)取极小值-23.(1)f(x】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知f(x)=x3+bx+cx+d在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α,2,β.
(1)求c的值;
(2)求证f(1)≥2;
(3)求|α-β|的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值.
题型:黑龙江难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c在x=1与x=-
2
3
时,都取得极值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的单调区间和极值;
(3)若对x∈[-1,2]都有f(x)<
3
c
恒成立,求c的取值范围.
题型:东营一模难度:| 查看答案
函数f(x)=(1-x)•ex的单调递增区间是______.
题型:不详难度:| 查看答案
设函数f(x)=x3+bx2+cx(x∈R),若g(x)=f(x)-f′(x)是奇函数
(1)求b,c的值;
(2)求g(x)的单调区间.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.