当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=ax+lnx(a∈R).(1)若a=1,求曲线y=f(x)在x=12处切线的斜率;(2)求函数f(x)的单调增区间;(3)设g(x)=2x,若...
题目
题型:黄冈模拟难度:来源:
已知函数f(x)=ax+lnx(a∈R).
(1)若a=1,求曲线y=f(x)在x=
1
2
处切线的斜率;
(2)求函数f(x)的单调增区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a的取值范围.
答案
(1)a=1时,f(x)=x+lnx
∴f"(x)=1+
1
x
,可得f"(
1
2
)=3
∴曲线y=f(x)在x=
1
2
处切线的斜率k=f"(
1
2
)=3
(2)由题意,得f"(x)=a+
1
x
,(x>0)
∴当a≥0时,f"(x)>0在(0,+∞)上恒成立;
当a<0时,f"(x)=a+
1
x
在(0,-
1
a
)上为正数,在(-
1
a
,+∞)上为负数
由此可得:当a≥0时,函数f(x)=ax+lnx是(0,+∞)上的增函数;
当a<0时,f(x)=ax+lnx在(0,-
1
a
)上为增函数,在(-
1
a
,+∞)上为减函数
(3)由题意,得f(x1)在(0,+∞)上的最大值小于g(x2)在[0,1]上的最大值.
∵g(x)=2x,[0,1]上是增函数
∴g(x2)在[0,1]上的最大值为g(1)=2
即f(x1)在(0,+∞)上的最大值小于2
当a≥0时,函数f(x)=ax+lnx是(0,+∞)上的增函数,f(x1)没有最大值;
当a<0时,f(x1)在(0,+∞)上的最大值为f(-
1
a
)=-1+ln(-
1
a
)<2
解之得a<-
1
e3
,可得实数a的取值范围为(-∞,-
1
e3
).
核心考点
试题【已知函数f(x)=ax+lnx(a∈R).(1)若a=1,求曲线y=f(x)在x=12处切线的斜率;(2)求函数f(x)的单调增区间;(3)设g(x)=2x,若】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
(n∈N*)

(Ⅰ)研究函数f2(x)的单调性;
(Ⅱ)判断fn(x)=0的实数解的个数,并加以证明.
题型:武昌区模拟难度:| 查看答案
已知函数f(x)=
2
3
x+
1
2
,h(x)=


x

(Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程lg[
3
2
f(x-1)-
3
4
]=2lgh(a-x)-2lgh(4-x);
(Ⅲ)设n∈Nn,证明:f(n)h(n)-[h(1)+h(2)+…+h(n)]≥
1
6
题型:不详难度:| 查看答案
已知函数f(x)=lnx-ax-3(a≠0),
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数g(x)=x3+
x2
2
[m-2f′(x)]
在区间(a,3)上有最值,求实数m的取值范围;
(Ⅲ)求证:ln(
1
22
+1)+ln(
1
32
+1)+ln(
1
42
+1)+…+ln(
1
n2
+1)<1(n≥2,n∈N*)
题型:荆州模拟难度:| 查看答案
函数y=x-2sinx在(0,2π)内的单调增区间为______.
题型:不详难度:| 查看答案
已知函数f(x)=ln(3-x)+ax+1.
(1)若函数f(x)在[0,2]上是单调递增函数,求实数a的取值范围;
(2)求函数f(x)在[0,2]上的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.