当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 定义在R上的函数f(x)满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )A.f(2-x1)≥f(2-x2)B...
题目
题型:济南三模难度:来源:
定义在R上的函数f(x)满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )
A.f(2-x1)≥f(2-x2B.f(2-x1)=f(2-x2
C.f(2-x1)<f(2-x2D.f(2-x1)≤f(2-x2
答案
①若f(x)=c,则f"(x)=0,此时(x-1)f"(x)≤0和y=f(x+1)为偶函数都成立,
此时当|x1-1|<|x2-1|时,恒有f(2-x1)=f(2-x2).
②若f(x)不是常数,因为函数y=f(x+1)为偶函数,所以y=f(x+1)=f(-x+1),
即函数y=f(x)关于x=1对称,所以f(2-x1)=f(x1),f(2-x2)=f(x2).
当x>1时,f"(x)≤0,此时函数y=f(x)单调递减,当x<1时,f"(x)≥0,此时函数y=f(x)单调递增.
若x1≥1,x2≥1,则由|x1-1|<|x2-1|,得x1-1<x2-1,即1≤x1<x2,所以f(x1)>f(x2).
同理若x1<1,x2<1,由|x1-1|<|x2-1|,得-(x1-1)<-(x2-1),即x2<x1<1,所以f(x1)>f(x2).
若x1,x2中一个大于1,一个小于1,不妨设x1<1,x2≥1,则-(x1-1)<x2-1,
可得1<2-x1<x2,所以f(2-x1)>f(x2),即f(x1)>f(x2).
综上有f(x1)>f(x2),即f(2-x1)>f(2-x2),
故选A.
核心考点
试题【定义在R上的函数f(x)满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )A.f(2-x1)≥f(2-x2)B】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数f(x)=
1
xlnx
(x>0且x≠1)

(1)若f"(x0)=0,求x0的值;
(2)求函数f(x)的单调区间;
(3)已知2
1
x
xa
对任意x∈(0,1)成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=
1
2
mx2+lnx-2x在定义域内是增函数,则实数m的取值范围为______.
题型:不详难度:| 查看答案
已知函数f(x)=ax-lnx.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0平行,求a的值;
(Ⅱ)求f(x)的单调区间.
题型:不详难度:| 查看答案
已知函数f(x)=x(a+lnx)有极小值-e-2
(Ⅰ)求实数a的值;
(Ⅱ)若k∈Z,且k<
f(x)
x-1
对任意x>1恒成立,求k的最大值.
题型:不详难度:| 查看答案
已知函数f(x)=x3-3(a-1)x2-6ax,x∈R,当a>0时,若函数f(x)在区间[-1、2]上是减函数,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.