当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数,且.(1)判断的奇偶性并说明理由;(2)判断在区间上的单调性,并证明你的结论;(3)若对任意实数,有成立,求的最小值....
题目
题型:不详难度:来源:
已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若对任意实数,有成立,求的最小值.
答案
(1)是奇函数;(2)在区间上单调递增;(3).
解析

试题分析:(1)由条件可求得函数解析式中的值,从而求出函数的解析式,求出函数的定义域并判断其是否关于原点对称(这一步很容易被忽略),再通过计算,与进行比较解析式之间的正负,从而判断的奇偶性;(2)由(1)可知函数的解析式,根据函数单调性的定义法进行判断求解,(常用的定义法步骤:取值;作差;整理;判断;结论);(3)综合(1)(2),根据函数的奇偶性、单调性,以及自变量的范围,分别求出函数在最大、最小值,从而得出式子最大值,求出实数的最小值.
试题解析:(1) 
函数定义域为关于原点对称

是奇函数                    4分
(2)任取

        
在区间上单调递增         8分
(3)依题意只需

                 12分
核心考点
试题【已知函数,且.(1)判断的奇偶性并说明理由;(2)判断在区间上的单调性,并证明你的结论;(3)若对任意实数,有成立,求的最小值.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数
(1)写出函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)若函数上值域是,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若在区间上,不等式恒成立,试确定实数的取值范围.
题型:不详难度:| 查看答案
函数f(x)=ln(x+1)-的零点所在的大致区间是(  )
A.(0,1)B.(1,2)
C.(2,e)D.(3,4)

题型:不详难度:| 查看答案
已知函数
(1)如果存在零点,求的取值范围
(2)是否存在常数,使为奇函数?如果存在,求的值,如果不存在,说明理由。
题型:不详难度:| 查看答案
下列说法不正确的是(     )
A.方程有实数根函数有零点
B.函数有两个零点
C.单调函数至多有一个零点
D.函数在区间上满足,则函数在区间内有零点

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.