当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数,(为常数),直线与函数、的图象都相切,且与函数图象的切点的横坐标为.(1)求直线的方程及的值;(2)若 [注:是的导函数],求函数的单调递增区间;(3...
题目
题型:不详难度:来源:
已知函数为常数),直线与函数的图象都相切,且与函数图象的切点的横坐标为
(1)求直线的方程及的值;
(2)若 [注:的导函数],求函数的单调递增区间;
(3)当时,试讨论方程的解的个数.
答案
(1)  ;  ;(2)  ;(3)详见解析.
解析

试题分析:(1)利用函数在处的导数,等于在处切线的斜率,所以先求,再求,直线的斜率就是,直线过点,代入得到直线的方程,直线的图象相切,所以代入联立,得到值;(2)先求, 得到,再求,令,得到的取值范围,即求得函数的单调递增区间;(3)令,再求,得到极值点,然后列表分析当变化时,的变化情况,结合为偶函数,画出的函数图形,再画,当直线上下变化时,可以看出交点的变化,根据交点的不同,从而确定,再不同的范围下得到不同的交点个数.此问注意分类讨论思想的使用,不要遗漏情况.属于较难习题.
试题解析:(1)解:由
故直线的斜率为,切点为,即
所以直线的方程为.                     3分
直线的图象相切,等价于方程组只有一解,
即方程有两个相等实根,
所以令,解得.             5分
(2)因为

,所以
所以函数的单调递增区间是.          8分
(3)令
,令,得,         10分
变化时,的变化情况如下表:









+



+




极大值

极小值

极大值

为偶函数, 所以函数的图象如图:

时,方程无解;
时,方程有两解;
时,方程有三解;
时,方程有四解.            14分
核心考点
试题【已知函数,(为常数),直线与函数、的图象都相切,且与函数图象的切点的横坐标为.(1)求直线的方程及的值;(2)若 [注:是的导函数],求函数的单调递增区间;(3】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  ).
A.
B.
C.
D.

题型:不详难度:| 查看答案
已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=x2xsin x+cos x.
(1)若曲线yf(x)在点(af(a))处与直线yb相切,求ab的值;
(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=ax2bxc(abc∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是(  ).

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.