当前位置:高中试题 > 数学试题 > 常见函数的导数 > 设定义在(0,+∞)上的函数f(x)=ax++b(a>0).(1)求f(x)的最小值;(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b...
题目
题型:不详难度:来源:
设定义在(0,+∞)上的函数f(x)=axb(a>0).
(1)求f(x)的最小值;
(2)若曲线yf(x)在点(1,f(1))处的切线方程为yx,求ab的值.
答案
(1)b+2(2)a=2,b=-1
解析
(1)f(x)=axb≥2 bb+2,
当且仅当ax=1 时,f(x)取得最小值为b+2.
(2)由题意得:f(1)= ⇔ab,①
f′(x)=a ⇒f′(1)=a,②
由①②得:a=2,b=-1.
核心考点
试题【设定义在(0,+∞)上的函数f(x)=ax++b(a>0).(1)求f(x)的最小值;(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=x3ax2axg(x)=2x2+4xc.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ax2-ln xx∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
题型:不详难度:| 查看答案
已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.
题型:不详难度:| 查看答案
已知函数,(>0,,以点为切点作函数图象的切线,记函数图象与三条直线所围成的区域面积为
(1)求
(2)求证:
(3)设为数列的前项和,求证:.来
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.