当前位置:高中试题 > 数学试题 > 导数的意义 > 已知函数.(Ⅰ)若函数在区间上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围....
题目
题型:不详难度:来源:
已知函数
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.
答案
(Ⅰ);(Ⅱ)
解析

试题分析:(Ⅰ)先对函数求导,求出函数的极值,根据函数在区间上存在极值,
所以 从而解得(Ⅱ)不等式恒成立问题转化为求函数的最值问题.
试题解析:
解:(Ⅰ)因为,则,          (2分)
时,;当时,.
所以上单调递增;在上单调递减,
所以函数处取得极大值.                (4分)
因为函数在区间上存在极值,
所以 解得                  (6分)
(Ⅱ)不等式即为 记
所以,        (9分)
,则

上单调递增,
,从而
上也单调递增,所以
所以.                         (12分)
核心考点
试题【已知函数.(Ⅰ)若函数在区间上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.】;主要考察你对导数的意义等知识点的理解。[详细]
举一反三
已知函数
(Ⅰ)若对任意,使得恒成立,求实数的取值范围;
(Ⅱ)证明:对,不等式成立.
题型:不详难度:| 查看答案
已知函数
(Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围;
(Ⅱ)令,是否存在实数,当 (是自然对数的底数)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
(本小题14分) 已知函数,若
(1)求曲线在点处的切线方程;
(2)若函数在区间上有两个零点,求实数b的取值范围;
(3)当
题型:不详难度:| 查看答案
(本小题满分13分)已知函数.
(1)若函数上单调递增,求实数的取值范围.
(2)记函数,若的最小值是,求函数的解析式.
题型:不详难度:| 查看答案
已知函数为正常数.
(Ⅰ)若,且,求函数的单调增区间;
(Ⅱ)若,且对任意都有,求的的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.