当前位置:高中试题 > 数学试题 > 均值不等式 > 已知a>0,b>0,则1a+1b+2ab的最小值是 ______....
题目
题型:不详难度:来源:
已知a>0,b>0,则
1
a
+
1
b
+2


ab
的最小值是 ______.
答案
1
a
+
1
b
≥2


1
ab
(当且仅当a=b时成立)
∵2


1
ab
+2


ab
≥4(当a=b=1时成立)
1
a
+
1
b
+2


ab
的最小值是4.
故答案为:4
核心考点
试题【已知a>0,b>0,则1a+1b+2ab的最小值是 ______.】;主要考察你对均值不等式等知识点的理解。[详细]
举一反三
已知x,y∈R+2x-3=(
1
2
)y
,若
1
x
+
m
y
,(m>0)的最小值为3,则m等于(  )
A.4B.3C.2


2
D.2
题型:鹰潭一模难度:| 查看答案
实数x,y满足4x2-5xy+4y2=5,设 S=x2+y2,则
1
Smax
+
1
Smin
=______.
题型:不详难度:| 查看答案
若动点P1(x1,y1),P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,则P1P2的中点P到原点的距离的最小值是(  )
A.
5


2
2
B.5


2
C.
15


2
2
D.15


2
题型:不详难度:| 查看答案
若2x+2y=1,则x+y的取值范围是(  )
A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]
题型:福建难度:| 查看答案
设a+b=2,b>0,则当a=______时,
1
2|a|
+
|a|
b
取得最小值.
题型:天津难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.