当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an},{bn}满足a1=2,a2=3,b1=1,且对任意的正整数m,n,p,q,当m+n=p+q时,都有am+bn=ap+bq,设数列{an}前项和...
题目
题型:不详难度:来源:
已知数列{an},{bn}满足a1=2,a2=3,b1=1,且对任意的正整数m,n,p,q,当m+n=p+q时,都有am+bn=ap+bq,设数列{an}前项和为Sn,{bn}前项和为Tn,则
1
2011
(S2011+T2011)
=______.
答案
∵对任意的正整数m,n,p,q,当m+n=p+q时,都有am+bn=ap+bq
∴a2+b1=a1+b2,将a1=2,a2=3,b1=1,代入可得b2=2
∵1+(n+1)=2+n
∴a1+bn+1=a2+bn,即bn+1-bn=1
∴数列{bn}是等差数列首项为1,公差为1,则Tn=
(1+n)n
2

∵(n+1)+1=n+2
∴an+1+b1=an+b2 则an+1-an=1
∴数列{an}是等差数列首项为2,公差为1,则Sn=
(2+n+1)n
2

1
2011
(S2011+T2011)
=
1
2011
(1007×2011+1006+2011)=2013
故答案为:2013
核心考点
试题【已知数列{an},{bn}满足a1=2,a2=3,b1=1,且对任意的正整数m,n,p,q,当m+n=p+q时,都有am+bn=ap+bq,设数列{an}前项和】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
数列{an}的前n项和为Sn,满足Sn=
3
2
an-
n
2
-
3
4
,设bn=log3(an+
1
2
)
,则数列{
1
bnbn+1
}
的前19项和为 ______.
题型:大连模拟难度:| 查看答案
数列{an}中,Sn是其前n项和,若Sn=2an-1,则an=______.
题型:徐州一模难度:| 查看答案
已知A(x1,y1),B(x2,y2)是函数f(x)=





2x
1-2x
,x≠
1
2
-1,x=
1
2
的图象上的任意两点,点M在直线x=
1
2
上,且


AM
=


MB

(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)
,设an=2Sn,Tn为数列{an}的前n项和,若存在正整数c,m,使得不等式
Tm-c
Tm+1-c
1
2
成立,求c和m的值.
(3)在(2)的条件下,设bn=31-Sn,求所有可能的乘积bi•bj(1≤i≤j≤n)的和.
题型:不详难度:| 查看答案
数列{an}的前n项和为Sn=n2,数列{bn}满足b1=1,且bn=2bn-1+1,n≥2.
(1)求an,bn的表达式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式an
(3)设bn=nan,求数列{bn}的前n项和Tn
题型:湛江一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.