当前位置:高中试题 > 数学试题 > 数列综合 > 已知点(1,3)、(an,an+1)(n∈N*)都在函数f(x)=px+2(p为常数)的图象上,a1=1,数列{bn}满足:bn=an+1n(n+1)(n∈N*...
题目
题型:不详难度:来源:
已知点(1,3)、(an,an+1)(n∈N*)都在函数f(x)=px+2(p为常数)的图象上,a1=1,数列{bn}满足:bn=an+
1
n(n+1)
(n∈N*).
(I)求数列{an}的通项公式;   
(II)求数列{bn}的前n项和Sn
答案
(I)∵点(1,3)、(an,an+1)在f(x)=px+2的图象上
∴3=p+2,an+1=pan+2
∴p=1,an+1-an=2
∴数列{an}是以2为公差的等差数列,
∵a1=1,d=2,∴an=a1+(n-1)d=2n-1;
(II)∵bn=an+
1
n(n+1)
=2n-1+(
1
n
-
1
n+1

∴Sn=[1+3+…+(2n-1)]+[(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)
]=n2+
n
n+1
核心考点
试题【已知点(1,3)、(an,an+1)(n∈N*)都在函数f(x)=px+2(p为常数)的图象上,a1=1,数列{bn}满足:bn=an+1n(n+1)(n∈N*】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
在数列{an}中,对于任意的正整数n都有a1+a2+…+an=3n-1,则{an2}的前n项和为(  )
A.9n-1B.
9n-1
2
C.
9n-1
4
D.
4
9
题型:不详难度:| 查看答案
(文科做)已知{an}的前n项和Sn=n2-n+1,则|a1|+|a2|+…+|a10|等于(  )
A.91B.65C.61D.56
题型:不详难度:| 查看答案
已知数列
1
1×4
1
4×7
1
7×10
,…,
1
(3n-2)(3n+1)
,…

(1)计算S1,S2,S3,S4
(2)猜想Sn的表达式,并用数学归纳法证明.
题型:不详难度:| 查看答案
在数列{an}中,a1=2,an+1-2an=0(n∈N*),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=______.
题型:不详难度:| 查看答案
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:
Sn
2n
>2n-3.
题型:浙江模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.