题目
题型:不详难度:来源:
1 |
2n |
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn.
答案
1 |
2 |
1 |
4 |
n≥2时,由Sn-Sn-1=-an+an-1+
1 |
2n |
得2nan-2n-1an-1=
1 |
2 |
∴数列{2nan}为等差数列,…(3分)
∴2nan=2×a1+(n-1)×
1 |
2 |
n |
2n+1 |
(2)由(1)得Sn=1-
n+2 |
2n+1 |
∴Tn=n-(
3 |
22 |
4 |
23 |
n+2 |
2n+1 |
1 |
2 |
1 |
2 |
3 |
23 |
4 |
24 |
n+2 |
2n+2 |
①-②得
1 |
2 |
1 |
2 |
3 |
4 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+2 |
2n+2 |
=
1 |
2 |
3 |
4 |
| ||||
1-
|
n+2 |
2n+2 |
=
1 |
2 |
1 |
2n+1 |
2n+4 |
2n+1 |
∴Tn=n-2+
2n+5 |
2n |
核心考点
试题【设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-12n,n∈N*.(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;(2)求数列{S】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
1 |
n |
nπ |
25 |
A.25 | B.50 | C.75 | D.100 |