当前位置:高中试题 > 数学试题 > 数列综合 > 已知{an}是等差数列,其中a10=30,a20=50.(1)求数列{an}的通项公式;(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值....
题目
题型:不详难度:来源:
已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.
答案
(1)由a10=30,a20=50,
得:





a1+9d=30
a1+19d=50
,解得a1=12,d=2,
∴an=2n+10;
(2)由bn=an-20,得bn=2n-10,
∴当n<5时,bn<0;当n>5时,bn>0;当n=5时,bn=0,
由此可知:数列{bn}的前4或5项的和最小,
又T4=T5=-20,数列{bn}的前n项和的最小值为-20.
核心考点
试题【已知{an}是等差数列,其中a10=30,a20=50.(1)求数列{an}的通项公式;(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+1bn+bn+1-bn=0,求数列f(x)max≤0的通项公式;
(Ⅲ)在满足(Ⅱ)的条件下,若cn=
ancos(nπ)
bn
,求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,且a1=2,a3=6.
(1)求数列{an}的通项公式;
(2)设数列{
1
Sn
}
的前n项和为Tn,求T2013的值.
题型:不详难度:| 查看答案
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,组成一新数列{bn},则数列{bn}的前n项和为
(  )
A.Tn=2n2-nB.Tn=4n2+3nC.Tn=2n2-3nD.Tn=4n2-5n
题型:不详难度:| 查看答案
设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.