当前位置:高中试题 > 数学试题 > 数列综合 > 数列{an}的前n项和为Sn,且a1=1,an+1=Sn,n=1,2,3,…,求: (Ⅰ)a2,a3,a4的值及数列{an}的通项公式;(Ⅱ)a2+a4+a6+...
题目
题型:北京高考真题难度:来源:
数列{an}的前n项和为Sn,且a1=1,an+1=Sn,n=1,2,3,…,求:
(Ⅰ)a2,a3,a4的值及数列{an}的通项公式;
(Ⅱ)a2+a4+a6+…+a2n的值。
答案
解:(Ⅰ)由,得


,得

所以
所以,数列{an}的通项公式为
 (Ⅱ)由(Ⅰ)可知a2,a4,…,a2n是首项为,公比为,项数为n的等比数列,
所以
核心考点
试题【数列{an}的前n项和为Sn,且a1=1,an+1=Sn,n=1,2,3,…,求: (Ⅰ)a2,a3,a4的值及数列{an}的通项公式;(Ⅱ)a2+a4+a6+】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0。不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c。
(1)求xn+1与xn的关系式;
(2)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)  (3)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论。
题型:湖南省高考真题难度:| 查看答案
已知数列{an}的各项都是正数,且满足:a0=1,an+1=an(4-an),n∈N,
(1)证明an<an+1<2,n∈N;
(2)求数列{an}的通项公式an
题型:江西省高考真题难度:| 查看答案
若数列{an}中,a1=3,且an+1=an2(n是正整数),则数列的通项an=(    )。
题型:上海高考真题难度:| 查看答案
已知a>0,数列{an}满足a1=a,an+1=a+,n=1,2,…。
(1)已知数列{an}极限存在且大于零,求A=(将A用a表示);
(2)设bn=an-A,n=1,2,…,证明:
(3)若|bn|≤对n=1,2,…都成立,求a的取值范围。
题型:湖北省高考真题难度:| 查看答案
已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.