当前位置:高中试题 > 数学试题 > 等差数列 > 设等比数列的前n项和为,等差数列的前n项和为,已知 (其中为常数),,。(1)求常数的值及数列,的通项公式和。(2)设,设数列的前n项和为,若不等式对于任意的恒...
题目
题型:不详难度:来源:
设等比数列的前n项和为,等差数列的前n项和为,已知 (其中为常数),
(1)求常数的值及数列的通项公式
(2)设,设数列的前n项和为,若不等式对于任意的恒成立,求实数m的最大值与整数k的最小值。
(3)试比较与2的大小关系,并给出证明。
答案
(1);(2)3;(3)略
解析
由题可得当时,
从而),
又由于为等比数列,所以),
所以;另一方面,当时,
所以,从而
(2)由(1)得
所以
…………①
从而…………②
①-②得
解得
由于是单调递增的,且,所以,即
所以实数m的最大值为,整数k的最小值为3.
(3)由可求得
时,
所以

所以2
核心考点
试题【设等比数列的前n项和为,等差数列的前n项和为,已知 (其中为常数),,。(1)求常数的值及数列,的通项公式和。(2)设,设数列的前n项和为,若不等式对于任意的恒】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
(本大题满分12分)数列的前项和为,已知
(Ⅰ)写出的递推关系式,并求关于的表达式;
(Ⅱ)设,求数列的前项和
题型:不详难度:| 查看答案
在等差数列{an}中,若S9=18,Sn=240,=30,则n的值为(  )
A.14B.15C.16D.17

题型:不详难度:| 查看答案
数列满足:,记,若
对任意的恒成立,则正整数的最小值为        
题型:不详难度:| 查看答案
已知首项不为零的数列的前n项和为,若对任意的r、s,都有.
(1)判断是否为等差数列,并证明你的结论;
(2)若,数列的第n项是数列的第,求;
(3)求和.
题型:不详难度:| 查看答案
在等差数列中, 则其前11项的和(    )
A.99B.198C.D.128

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.