当前位置:高中试题 > 数学试题 > 等差数列 > (本小题满分13分)数列{}从第一项开始按照从上到下,从左到右的规律排列成如图所示的“三角阵”,即第一行是1个1,第二行是2个2,第三行是3个3,……,第n行是...
题目
题型:不详难度:来源:
(本小题满分13分)数列{}从第一项开始按照从上到下,从左到右的规律排列成如图所示的“三角阵”,即第一行是1个1,第二行是2个2,第三行是3个3,……,第n行是n个n()

(1)数列{}中第几项到第几项为数字20
(2)求数列{}中的第2011项
答案



解析

核心考点
试题【(本小题满分13分)数列{}从第一项开始按照从上到下,从左到右的规律排列成如图所示的“三角阵”,即第一行是1个1,第二行是2个2,第三行是3个3,……,第n行是】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
如图,抛物线第一象限部分上的一系列点与y正半轴上的点及原点,构成一系列正三角形(记为O),记
(1)求的值;(2)求数列的通项公式
(3)求证:

题型:不详难度:| 查看答案
是等差数列的前项之和,,则(    )
A.100B.81C.121D.120

题型:不详难度:| 查看答案
(本题满分15分)已知各项均不相等的等差数列的前四项和,且成等比.
(Ⅰ)求数列的通项公式;
(Ⅱ)设为数列的前n项和,若对一切恒成立,求实数的最小值.
题型:不详难度:| 查看答案
已知是公差为的等差数列,它的前项和为, 等比数列的前项和为,
(1)求公差的值;
(2)若对任意的,都有成立,求的取值范围;
(3)若,判别方程是否有解?说明理由.
题型:不详难度:| 查看答案
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数,使得对任意的)都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当是周期为的周期数列,当是周期为的周期数列。
(1)设数列满足),不同时为0),且数列是周期为的周期数列,求常数的值;
(2)设数列的前项和为,且
①若,试判断数列是否为周期数列,并说明理由;
②若,试判断数列是否为周期数列,并说明理由;
(3)设数列满足),,数列的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在,   说明理由;
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.