当前位置:高中试题 > 数学试题 > 等差数列 > 设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C...
题目
题型:不详难度:来源:
设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0
D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

答案
C
解析
选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立
核心考点
试题【设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知各项均为正数的两个数列满足:
(1)设,求证:数列是等差数列;
(2)设,且是等比数列,求的值.
题型:不详难度:| 查看答案
已知等差数列的前5项和为105,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)对任意,将数列中不大于的项的个数记为.求数列的前m项和.
题型:不详难度:| 查看答案
的各位数字之和,如,则;记,…,,则        .
题型:不详难度:| 查看答案
(本题满分16分)
已知数列{an}满足Sn+an=2n+1, 
(1) 写出a1, a2, a3,并推测an的表达式;
(2) 用数学归纳法证明所得的结论。
题型:不详难度:| 查看答案
设有一个边长为1的正三角形,设为A1,将A1的每边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后得到的图形记为A2,将A2的每边三等分,再重复上述过程,得到图形A3,再重复上述过程,得到图形A4,则A4的周长是_________________。 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.