当前位置:高中试题 > 数学试题 > 已知三角函数值求角 > 设f(x)=6cos2x-3sin2x.(Ⅰ)求f(x)的最大值及最小正周期;(Ⅱ)△ABC中锐角A满足f(A)=3-23,B=π12,角A、B、C的对边分别为...
题目
题型:不详难度:来源:
设f(x)=6cos2x-


3
sin2x.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)△ABC中锐角A满足f(A)=3-2


3
B=
π
12
,角A、B、C的对边分别为a,b,c,求(
a
b
+
b
a
)-
c2
ab
的值.
答案
(Ⅰ)f(x)=6cos2x-


3
sin2x
=6×
1+cos2x
2
-


3
sin2x
=3cos2x-


3
sin2x+3
=2


3


3
2
cos2x-
1
2
sin2x)+3
=2


3
cos(2x+
π
6
)+3,
∵-1≤cos(2x+
π
6
)≤1,
∴f(x)的最大值为2


3
+3;
又ω=2,∴最小正周期T=
2
=π;
(Ⅱ)由f(A)=3-2


3
得:2


3
cos(2A+
π
6
)+3=3-2


3

∴cos(2A+
π
6
)=-1,
又0<A<
π
2
,∴
π
6
<2A+
π
6
6

∴2A+
π
6
=π,即A=
5
12

又B=
π
12
,∴C=
π
2

∴cosC=
a2+b2-c2
2ab
=0,
则(
a
b
+
b
a
)-
c2
ab
=
a2+b2-c2
ab
=2×
a2+b2-c2
2ab
=2cosC=0.
核心考点
试题【设f(x)=6cos2x-3sin2x.(Ⅰ)求f(x)的最大值及最小正周期;(Ⅱ)△ABC中锐角A满足f(A)=3-23,B=π12,角A、B、C的对边分别为】;主要考察你对已知三角函数值求角等知识点的理解。[详细]
举一反三
已知


m
=(2cosx+2


3
sinx,1),


n
=(cosx,-y)
,满足


m


n
=0

(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若f(
A
2
)=3
,且a=2,求b+c的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=-1+2


3
sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.
题型:解答题难度:一般| 查看答案
在△ABC中,角A、B、C所对的边分别为a,b,c,若sin2
B+C
2
+cos2A=
1
4
,且∠A为锐角.
(Ⅰ)求∠A的度数;
(Ⅱ)若a=


3
,b+c=3
,求△ABC的面积.
题型:不详难度:| 查看答案
已知函数f(x)=sinωxsin(ωx+
π
3
)+cos2ωx(ω>0)
的最小正周期为π.
(1)求ω的值;
(II )求函数f(x)在区间[-
π
6
12
]
的取值范围.
题型:不详难度:| 查看答案
已知sinx+3cosx=0,则
sinx+2cosx
5cosx-sinx
=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.