当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 定义算式⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是(  )A.-1<a<1B.0<a<2C.-32<a<1...
题目
题型:单选题难度:一般来源:不详
定义算式⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是(  )
A.-1<a<1B.0<a<2C.-
3
2
<a<
1
2
D.-
1
2
<a<
3
2
答案
∵x⊗y=x(1-y),
∴若不等式(x-a)⊗(x+a)<1对任意x都成立,
则(x-a)•(1-x-a)-1<0恒成立
即-x2+x+a2-a-1<0恒成立
则△=1+4(a2-a-1)=4a2-4a-3<0恒成立
解得-
1
2
<a<
3
2

故选D
核心考点
试题【定义算式⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是(  )A.-1<a<1B.0<a<2C.-32<a<1】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知集合A={x|x2+px+q=0},B={x|qx2+px+1=0},同时满足:①A∩B≠∅;②-2∈A(p,q≠0),求p,q的值.
题型:解答题难度:一般| 查看答案
已知A为三角形的一个内角,函数y=x2cosA-4xsinA+6,对于∀x∈R都有y>0,则角A的取值范围是______.
题型:填空题难度:一般| 查看答案
若对∀x∈R,kx2-kx-1<0恒成立,则k的取值范围是(  )
A.-4≤k≤0B.-4≤k<0C.-4<k≤0D.-4<k<0
题型:单选题难度:简单| 查看答案
(附加题)已知函数f(x)=x2-2kx+k+1.
(Ⅰ)若函数在区间[1,2]上有最小值-5,求k的值.
(Ⅱ)若同时满足下列条件①函数f(x)在区间D上单调;②存在区间[a,b]⊆D使得f(x)在[a,b]上的值域也为[a,b];则称f(x)为区间D上的闭函数,试判断函数f(x)=x2-2kx+k+1是否为区间[k,+∞)上的闭函数?若是求出实数k的取值范围,不是说明理由.
题型:解答题难度:一般| 查看答案
若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的值域恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.如果函数g(x)=x2+m是(-∞,0)上的正函数,则实数m的取值范围______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.