当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)...
题目
题型:填空题难度:一般来源:资中县模拟
已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),bn=1-
8-m
an
,我们把所有满足bi•bi+1<0的正整数i的个数叫做数列{bn}的异号数.根据以上信息,给出下列五个命题:
①m=0;
②m=4;
③数列{an}的通项公式为an=2n-5;
④数列{bn}的异号数为2;
⑤数列{bn}的异号数为3.
其中正确命题的序号为______.(写出所有正确命题的序号)
答案
若不等式f(x)≤0的解集有且只有一个元素,根据二次函数的性质,应有△=(-m)2-4m=0 解得m=0或m=4.
当m=0时,f(x)=x2在(0,+∞)上是增函数,不满足(2),①错误
当m=4时,f(x)=x2-4x+4=(x-2)2,取0<x1=1<x2=2 使得不等式f(x1)>f(x2),故m=4,②正确.
由上Sn=f(n)=(n-2)2,当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=(n-2)2-(n-3)2=2n-5.
an=





1    n=1
2n-5     n≥2
        ③错误
当n=1时,b1=1-4=-3<0,而b2=1-
4
a2
=5>0,b1b2<0,所以i可以为1.
n≥2时,bn•bn+1=(1-
4
2n-5
)(1-
4
2n-3
)=
(2n-9)(2n-7)
(2n-5)(2n-3)
<0
解得n=2,4.即i=2、4
即数列{bn}的异号数为3.   ④错误,⑤正确
故答案为:②⑤
核心考点
试题【已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+bx+c,且f(1)=0,f(3)=0,则c-b+1=______.
题型:填空题难度:一般| 查看答案
设函数f(x)=x2+(2a+1)x+a2+3a(a∈R).
(I)若f(x)在[0,2]上的最大值为0,求a的值;
(II)若f(x)在闭区间[α,β]上单调,且{y|y=f(x),α≤x≤β}=[α,β],求α的取值范围.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=x2-16x+q+3,问:是否存在常数(t≥0)t,当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.