当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知二次函数f(x)=x2-16x+q+3,问:是否存在常数(t≥0)t,当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t....
题目
题型:解答题难度:一般来源:不详
已知二次函数f(x)=x2-16x+q+3,问:是否存在常数(t≥0)t,当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.
答案





t<8
8-t≥10-8
t≥0
时,即0≤t≤6时,f(x)的值域为:[f(8),f(t)],
即[q-61,t2-16t+q+3]
∴t2-16t+q+3-(q-61)=t2-16t+64=12-t
即t2-15t+52=0
∴t=
15±


17
2
,经检验t=
15+


17
2
不合题意,舍去.





t<8
8-t<10-8
t≥0
时,即6≤t<8时,f(x)的值域为:[f(8),f(10)],即[q-61,q-57]
∴q-57-(q-61)=4=12-t
∴t=8
经检验t=8不合题意,舍去
当t≥8时,f(x)的值域为:[f(t),f(10)],即[t2-16t+q+3,q-57]
∴q-57-(t2-16t+q+3)=-(t2-16t+60)=12-t
∴t2-17t+72=0
∴t=8或t=9
经检验t=
15-


17
2
或8或t=9满足题意,
所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.
核心考点
试题【已知二次函数f(x)=x2-16x+q+3,问:是否存在常数(t≥0)t,当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)的二次项系数为负,对任意实数x都有f(2-x)=f(2+x),问当f(1-2x2)与f(1+2x-x2)满足什么条件时才有-2<x<0?
题型:解答题难度:一般| 查看答案
已知f(x)=x2-4x,则f(sinx)的最小值为(  )
A.-5B.-4C.-3D.0
题型:单选题难度:一般| 查看答案
已知二次函数y=g(x)的图象经过点O(0,0)、A(m,0)与点P(m+1,m+1),设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值,其中m>n>0,b<a.
(1)求g(x)的二次项系数k的值;
(2)比较a,b,m,n的大小(要求按从小到大排列);
(3)若m+n≤2,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).
题型:解答题难度:一般| 查看答案
选修4-5,不等式选讲,已知f(x)=x2-x+c,设x1,x2∈(0,1),且x1≠x2.求证:|f(x1)-f(x2)|<
1
4
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.