当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).且n+3m2=0(m>0),若函数f(x)在x∈[1,+∞)上的最小值为0,则m=(  )A...
题目
题型:单选题难度:简单来源:不详
已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).且n+3m2=0(m>0),若函数f(x)在x∈[1,+∞)上的最小值为0,则m=(  )
A.e
2
3
B.e
3
2
C.
3
2
D.-1
答案
(1)当n+3m2=0时,f(x)=x2+mx-3m2lnx.
则f"(x)=2x+m-
3m2
x
=
2x2+mx-3m2
x
=
(x-m)(2x+3m)
x

令f"(x)=0,得x=-
3m
2
(舍去),x=m.
①当m>1时,

∴当x=m时,fmin(x)=2m2-3m2lnm.
令2m2-3m2lnm=0,得m=e
2
3

②当0<m≤1时,f"(x)≥0在x∈[1,+∞)上恒成立,f(x)在x∈[1,+∞)上为增函数,当x=1时,fmin(x)=1+m.
令m+1=0,得m=-1(舍).
综上所述,所求m=e
2
3

故选:A.
核心考点
试题【已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).且n+3m2=0(m>0),若函数f(x)在x∈[1,+∞)上的最小值为0,则m=(  )A】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
设a为正实数,函数f(x)=2x2+(x-a)|x-a|.
(Ⅰ)若f(0)≤-1,求a的取值范围;
(Ⅱ)求f(x)的最小值;
(Ⅲ)若x∈(a,+∞),求不等式f(x)≥1的解集.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)是定义在R上的偶函数,且关于x的不等式f(x)<4x的解集为{x|1<x<3}.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设F(x)=f(x)+bx,且当x∈[-1,2]时,函数F(x)的最小值为1,求实数b的值.
题型:解答题难度:一般| 查看答案
设集合M=[0,1),N=[1,2),函数f(x)=





2x(x∈M)
4-2x(x∈N)

(1)若x∈M,g(x)=f2(x)-2f(x)+a,且g(x)的最小值为1,求实数a的值;
(2)若x0∈M,且f(f(x0))∈M,求x0的取值范围.
题型:解答题难度:一般| 查看答案
若关于x的方程


x2-4
=x+m
没有实数解,则实数m的取值范围为______.
题型:填空题难度:一般| 查看答案
若一元二次不等式2kx2+kx-
3
8
<0
对一切实数x都成立,则k的范围是______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.