当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=lnx,g(x)=ax(a>0),设F(x)=f(x)+g(x)(1)求F(x)的单调区间;(2)若以y=F(x)(x∈(0,3])图象上任意...
题目
题型:解答题难度:一般来源:江苏模拟
已知函数f(x)=lnx,g(x)=
a
x
(a>0)
,设F(x)=f(x)+g(x)
(1)求F(x)的单调区间;
(2)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)若对所有的x∈[e,+∞)都有xf(x)≥ax-a成立,求实数a的取值范围.
答案
(1)F(x)=f(x)+g(x)=lnx+
a
x
(x>0)
F(x)=
1
x
-
a
x2
=
x-a
x2
(x>0)
.(2分)
因为a>0由F′(x)>0⇒x∈(a,+∞),所以F(x)在上单调递增;由F′(x)<0⇒x∈(0,a),
所以F(x)在(0,a)上单调递减.(5分)
(2)F(x)=
x-a
x2
(0<x≤3),k=F(x0)=
x0-a
x02
1
2
(0<x0≤3)
恒成立,(7分)
a≥(-
1
2
x02+x0)max
,当x0=1时取得最大值
1
2
.所以,a≥
1
2
,所以amin=
1
2
.(10分)
(3)因为x≥e,所以xlnx≥ax-a⇔a≤
xlnx
x-1
,令h(x)=
xlnx
x-1
,x∈[e,+∞)
,则h(x)=
x-lnx-1
(x-1)2
.(12分)
因为当x≥e时,(x-lnx-1)=1-
1
x
>0
,所以x-lnx-1≥e-lne-1=e-2>0,
所以h′(x)>0,所以h(x)min=h(e)=
e
e-1
,所以0<a≤
e
e-1
.(16分)
核心考点
试题【已知函数f(x)=lnx,g(x)=ax(a>0),设F(x)=f(x)+g(x)(1)求F(x)的单调区间;(2)若以y=F(x)(x∈(0,3])图象上任意】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)是奇函数,当x>0时,f(x)=2x-3,则当x<0时,f(x)=______.
题型:填空题难度:一般| 查看答案
已知a为常数,f(x)=lg(
a
1+x
-1)
是奇函数.
(1)求a的值,并求出f(x)的定义域;
(2)解不等式f(x)>-1.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2-alnx,g(x)=bx-


x
+2,其中a,b∈R且ab=2.函数f(x)在[
1
4
,1
]上是减函数,函数g(x)在[
1
4
,1]
上是增函数.
(1)求函数f(x),g(x)的表达式;
(2)若不等式f(x)≥g(x)对x∈[
1
4
,1]
恒成立,求实数m的取值范围.
(3)求函数h(x)=f(x)+g(x)-
1
2
x
的最小值,并证明当n∈N*,n≥2时f(n)+g(n)>3.
题型:解答题难度:一般| 查看答案
已知:二次函数f(x)=ax2+bx+c满足:①对于任意实数x,都有f(x)≥x,且当x∈(1,3)时,f(x)≤
1
8
(x+2)2
恒成立,②f(-2)=0
(1)求证:f(2)=2
(2)求f(x)的解析式.
(3)若g(x)=x+m,对于任意x∈[-2,2],存在x0∈[-2,2],使得f(x)=g(x0)成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,试比较f(3),g(0),f(2)三数的大小:______
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.