当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)-f(x)x2<0恒成立,则不等式x2f(x)>0的解集是(  )A.(-2,0)∪(...
题目
题型:单选题难度:简单来源:南宁模拟
设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有
xf′(x)-f(x)
x2
<0
恒成立,则不等式x2f(x)>0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)
答案
因为当x>0时,有
xf′(x)-f(x)
x2
<0
恒成立,即[
f(x)
x
]′<0恒成立,
所以
f(x)
x
在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选D.
核心考点
试题【设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)-f(x)x2<0恒成立,则不等式x2f(x)>0的解集是(  )A.(-2,0)∪(】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知定义在(-∞,0)∪(0,+∞)上的奇函数f(x),当x>0时,f(x)=x2+x-1,那么当x<0时,f(x)的解析式为(  )
A.-x2+x+1B.-x2+x-1C.-x2-x+1D.-x2-x-1
题型:单选题难度:一般| 查看答案
已知f(x)是定义在R上偶函数且连续,当x>0时,f′(x)<0,若f(lg(x))>f(1),则x的取值范围是(  )
A.(
1
10
,1)
B.(0,
1
10
)∪(1,+∞)
C.(
1
10
,10)
D.(0,1)∪(10,+∞)
题型:单选题难度:一般| 查看答案
设函数f(x)=x3-3x,则f(x)在[-2,2]上最大值为(  )
A.0B.1C.2D.3
题型:单选题难度:简单| 查看答案
设函数f(x)=x-
1
x
,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是(  )
A.m<0B.m≤0C.m≤-1D.m<-1
题型:单选题难度:一般| 查看答案
下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=xB.y=-x3C.y=
1
x
D.y=(
1
2
)
x
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.