题目
题型:江苏模拟题难度:来源:
①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围;
答案
解:(1)① ② (2)如图3 | (图1) |
如图,反比例函数的图像与一次函数的图像交于点A(m,2),点 B(-2, n ),一次函数图像与y轴的交点为C。 | |
(1)求一次函数解析式; (2)求△AOB的面积。 (3)在x轴上有一点P,使得△OAP为等腰三角形,请直接写出符合要求的所有P点坐标.(不必写计算过程 ) | |
如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO将纸片翻折后,点B恰好落在x轴上,记为D,折痕为CE,已知tan∠ODC=0.75。 | |
(1)求点D的坐标。 (2)求折痕CE所在直线的表达式。 | |
在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母abc ,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格)。当明码对应的序号x为奇数时,密码对应的序号y=,当明码对应的序号x为偶数时,密码对应的序号y=+13,按下述规定,将明码“love”译成密码是 | |
[ ] | |
A.gawq B.shxc C.sdri D.love | |
如图,已知反比例函数y=的图象经过点A(1,-3),一次函数y = kx + b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B(3,n)。 (1)试确定这两个函数的解析式; (2)求△AOB的面积; (3)根据图形直接写出反比例函数值大于一次函数值时自变量的取值范围。 | |
某工厂计划为汶川地震灾区生产A、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套 A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3。 | |
(1)有多少种生产方案? (2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由。 |