当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有f(m)+f(n)m+n>0,解不等式:f(x+12)<f(...
题目
题型:解答题难度:一般来源:不详
已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0
,解不等式:f(x+
1
2
)<f(
1
x-1
)
答案
任取-1≤x1<x2≤1,则
f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)-f(x2)
x1-x2
•(x1-x2
由已知得
f(x1)-f(x2)
x1-x2
>0,
∵-1≤x1<x2≤1,∴x1-x2<0,可得f(x1)-f(x2)<0
∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数,
因此不等式f(x+
1
2
)<f(
1
x-1
)
等价于-1≤x+
1
2
1
x-1
≤1
解此不等式,得:-
3
2
≤x<-1,即原不等式的解集为[-
3
2
,-1)
核心考点
试题【已知f(x)是定义在[-1,1]上的奇函数,且f (1)=1,若m,n∈[-1,1],m+n≠0时有f(m)+f(n)m+n>0,解不等式:f(x+12)<f(】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(2008)的值是(  )
A.-1B.1C.2D.0
题型:单选题难度:简单| 查看答案
已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求λ的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2-tx-2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)是R上的偶函数,对任意x1,x2∈[0,+∞),且x1≠x2时,都有(x1-x2)[f(x1)-f(x2)]<0,则f(-2),f(0),f(3)的大小关系是______.
题型:填空题难度:一般| 查看答案
已知定义在R上连续的奇函数f(x)在(0,+∞)上的是增函数,若f(x)>f(2-x),则x的范围是(  )
A.x>1B.x<1C.0<x<2D.1<x<2
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.