当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=ax2+1bx+c(a,b,c∈R)是奇函数,又f(1)=2,f(2)=52.(1)求a,b,c的值;(2)当x∈(0,+∞)时,讨论函数的单...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=
ax2+1
bx+c
(a,b,c∈R)
是奇函数,又f(1)=2,f(2)=
5
2

(1)求a,b,c的值;
(2)当x∈(0,+∞)时,讨论函数的单调性,并写出证明过程.
答案
(1)∵f(x)为奇函数.
∴f(-x)=-f(x),
f(x)=
ax2+1
-bx+c
-f(x)=
ax2+1
-bx-c

∴对任意x∈(-∞,0)∪(0,+∞),
ax2+1
-bx+c
=
ax2+1
-bx-c
恒成立
∴c=0(2分)
f(1)=
a+1
b
=2
,且f(2)=
4a+1
2b
=
5
2

可得a=b=1(4分)
∴a=b=1,c=0(5分)
(2)f(x)=
x2+1
x

得x1,x2是(0,+∞)上任意两实数,且x1<x2
f(x1)-f(x2)=
x21
+1
x1
-
x22
+1
x2
=
x21
x2+x2-x1
x22
-x1
x1x2

=
x1x2(x1-x2)+(x2-x1)
x1x2
=
(x1-x2)(x1x2-1)
x1x2
(7分)
当x1,x2∈(0,1)时,x1x2-1<0,x1-x2<0,x1x2>0
(x1-x2)(x1x2-1)
x1x2
>0
,即f(x1)>f(x2)(9分)
当x1,x2∈(1,+∞)时,x1x2-1>0,x1-x2<0,x1x2>0
(x1-x2)(x1x2-1)
x1x2
<0
即f(x1)<f(x2)(11分)
∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.(12分)
核心考点
试题【已知函数f(x)=ax2+1bx+c(a,b,c∈R)是奇函数,又f(1)=2,f(2)=52.(1)求a,b,c的值;(2)当x∈(0,+∞)时,讨论函数的单】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
若f(x)=2x+2-xlga是奇函数,则实数a=______.
题型:填空题难度:一般| 查看答案
已知f(x)是一次函数,且f(0)=3,f(1)=5.
(1)求f(x)的解析式;
(2)若当-2≤x≤1时,函数f(x)+3tx+t>0恒成立,求实数t的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x.
(1)求f(-1)的值;
(2)当x<0时,求f(x)的解析式;
(3)求函数f(x)在[t,t+1](t>0)上的最小值.
题型:解答题难度:一般| 查看答案
已知定义域为R的函数f(x)=
1
2x+1
-
1
2

(1)判断其奇偶性并证明;
(2)判断函数f(x)在R上的单调性,不用证明;
(3)是否存在实数k,对于任意t∈[1,2],不等式f(t2-2t)+f(2t2-k)>0恒成立.若存在,求出实数k的取值范围;若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(1)+f(2)+f(3)+…+f(2009)的值为 ______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.