当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若不等式3x2-2ax>(13)x+1对一切实数x恒成立,则实数a的取值范围为______....
题目
题型:填空题难度:一般来源:不详
若不等式3x2-2ax(
1
3
)
x+1
对一切实数x恒成立,则实数a的取值范围为______.
答案
3x2-2ax(
1
3
)
x+1
=3-x-1恒成立
又y=3x为R上的单调递增函数
∴x2-2ax>-x-1恒成立,即x2+(1-2a)x+1>0恒成立
∴△=(1-2a)2-4<0
∴4a2-4a-3<0
-
1
2
<a<
3
2

故答案为-
1
2
<a<
3
2
核心考点
试题【若不等式3x2-2ax>(13)x+1对一切实数x恒成立,则实数a的取值范围为______.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+(3m+1)x+3m(m>0)的图象与x轴交于不同的两点A,B且|AB|=2.
(1)求实数m的值;
(2)设g(x)=f(x)-λx,x∈[0,+∞),若g(x)图象上的点都在直线y=1上方,求λ的取值范围.
题型:解答题难度:一般| 查看答案
已知定义在R上的偶函数f (x)在[0,+∞]上是增函数,则使不等式f (2x-1)≤f (x-2)成立的实数x的取值范围是(  )
A.[-1,1]B.(-∞,1)C.[0,1]D.[-1,+∞)
题型:单选题难度:简单| 查看答案
已知函数f(x)=ln
ex-e-x
2
,则f(x)是(  )
A.非奇非偶函数,且在(0,+∝)上单调递增
B.奇函数,且在R上单调递增
C.非奇非偶函数,且在(0,+∝)上单调递减
D.偶函数,且在R上单调递减
题型:单选题难度:简单| 查看答案
已知函数f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.