当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现...
题目
题型:单选题难度:简单来源:不详
定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现有如下命题:
①对给定的函数f(x),其承托函数可能不存在,也可能有无数个;②g(x)=2x为函数f(x)=2x的一个承托函数;③定义域和值域都是R的函数f(x)不存在承托函数.
下列选项正确的是(  )
A.①B.②C.①③D.②③
答案
对于①,若f(x)=sinx,则g(x)=B(B<-1),
就是它的一个承托函数,且有无数个,再如y=tanx,y=lgx就没有承托函数,∴命题①正确、
对于②,∵当x=
3
2
时,g(
3
2
)
=3,f(
3
2
)
=2


2
=


8

∴f(x)<g(x),
∴g(x)=2x不是f(x)=2x的一个承托函数,故错误;
对于③如f(x)=2x+3存在一个承托函数y=2x+1,故错误;
故选A.
核心考点
试题【定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=
(x+1)(x+a)
x2
为偶函数.
(Ⅰ)求实数a的值;
(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-
1
4
,判断λ与E的关系;
(Ⅲ)当x∈[
1
m
1
n
]
(m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.
题型:解答题难度:一般| 查看答案
对于给定正数k,定fk(x)=





f(x)   (f(x)≤k)
k    (f(x)>k)
,设f(x)=ax2-2ax-a2+5a+2,对任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,则(  )
A.k的最大值为2B.k的最小值为2
C.k的最大值为1D.k的最小值为1
题型:单选题难度:简单| 查看答案
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
(b,c∈N*)
有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
1
an
)=1
,求数列{an}的通项公式;
(3)求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax+
b
x
+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1.
(I)用a表示出b,c;
(II)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知非零向量


a


b
,满足


a


b
,则函数f(x)=(


a
x+


b
)2
(x∈R)是(  )
A.既是奇函数又是偶函数B.非奇非偶函数
C.奇函数D.偶函数
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.