当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知定义域为[0,1]的函数f (x)同时满足:①对于任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则...
题目
题型:解答题难度:一般来源:不详
已知定义域为[0,1]的函数f (x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2).
(1)试求f(0)的值;
(2)试求函数f (x)的最大值;
(3)试证明:当x∈(
1
4
1
2
]
时,f(x)<2x.
答案
(1)令x1=x2=0,依条件③可得f(0+0)≥2f(0),即f(0)≤0
又由条件(1)得f(0)≥0 故f(0)=0(4分)
(2)任取0≤x1<x2≤1可知x2-x1∈(0,1],则
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)≥f(x1
于是当0≤x≤1时,有f(x)≤f(1)=1因此当x=1时,f(x)取最大值1.(9分)
(3)证明:当x∈(
1
2
,1]
时,f(x)≤f(1)=1
当x∈(
1
4
1
2
]
时,
1
2
<2x≤1,f(2x)≤1,f(2x)≥f(x)+f(x)=2f(x)
∴f(x)≤
1
2
f(2x)≤
1
2
<2x   即f(x)<2x.(14分)
核心考点
试题【已知定义域为[0,1]的函数f (x)同时满足:①对于任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知二次函数f(x)=ax2+bx+c且f(-1)=0,f(1)=1.是否存在常数a,b,c使得不等式x≤f(x)≤
1
2
(x2+1)
对一切实数x都成立?若存在,求出实数a,b,c的值;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数y=f(2x+2)-1是定义在R上的奇函数,函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称,若x1+x2=2,则g(x1)+g(x2)=(  )
A.-2B.4C.-4D.2
题型:单选题难度:简单| 查看答案
已知定义域为R的函数f(x),对任意的x∈R都有f(x+1)=f(x-
1
2
)+2
恒成立,且f(
1
2
)=1
,则f(62)等于(  )
A.1B.62C.64D.83
题型:单选题难度:一般| 查看答案
设函数f(x)=-4x+b,且不等式|f(x)|<k的解集为{x|-1<x<2}.
(Ⅰ)求b,k的值;
(Ⅱ)证明:函数φ(x)=
4x
f(x)
的图象关于点P(
1
2
,-1)
对称.
题型:解答题难度:一般| 查看答案
不等式m≤
x2+2
|x|
对一切非零实数x恒成立,则实数m的取值范围是______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.