当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设函数f(x)=x3-ax2+3x+b,a,b是实常数,其图象在点(1,f(1))处的切线平行于x轴.(1)求a的值;(2)若对任意x∈[-1,4],都有f(x...
题目
题型:解答题难度:一般来源:不详
设函数f(x)=x3-ax2+3x+b,a,b是实常数,其图象在点(1,f(1))处的切线平行于x轴.
(1)求a的值;
(2)若对任意x∈[-1,4],都有f(x)>f′(x)成立,求b的取值范围.
答案
(1)求导函数可得f′(x)=3x2-2ax+3,∴f′(1)=6-2a
∵图象在点(1,f(1))处的切线平行于x轴
∴f′(1)=0
∴6-2a=0,∴a=3;
(2)对任意x∈[-1,4],都有f(x)>f′(x)成立,等价于b>-x3+6x2-9x+3在[-1,4]上恒成立;
令g(x)=-x3+6x2-9x+3,x∈[-1,4],只要b>gmax(x)
∵g′(x)=-3x2+12x-9
令g′(x)>0,可得1<x<3,令g′(x)<0,可得x<1,或x>3
∴函数在(1,3)上单调增,在(-∞,1),(3,+∞)上单调减
∴x=3时,函数取得极大值为g(3)=3
∵g(-1)=19,g(4)=-1
∴g(x)在[-1,4]上的最大值为19
∴b>19
核心考点
试题【设函数f(x)=x3-ax2+3x+b,a,b是实常数,其图象在点(1,f(1))处的切线平行于x轴.(1)求a的值;(2)若对任意x∈[-1,4],都有f(x】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=(a-1)x2+
a+1
x
-(a+1)x(a∈R)

(Ⅰ)讨论f(x)的奇偶性;
(Ⅱ)当f(x)为奇函数时,判断f(x)在区间(0,+∞)上的单调性,并用单调性的定义证明你的结论.
题型:解答题难度:一般| 查看答案
函数f(x)是偶函数,当x>0时,f(x)=1+2x-x2;则当x<0时,f(x)=(  )
A.1+2x-x2B.1-2x-x2C.1+2x+x2D.1-2x+x2
题型:单选题难度:简单| 查看答案
已知函数f(x)=lnx-
a
x
+2.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若xlnx≤mx2-
1
2
在x∈[
1
e
,1]上恒成立,求m的取值范围.
题型:解答题难度:一般| 查看答案
定义两种运算:a⊕b=


a2-b2
,a⊗b=


(a-b)2
,则函数f(x)=
3⊕x
(x⊗3)-3
为(  )
A.偶函数B.奇函数
C.奇函数且为偶函数D.非奇函数且非偶函数
题型:单选题难度:简单| 查看答案
已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果对任意x∈(1,2],f"(x)>a2恒成立,求实数a的取值范围;
(2)设实数f(x)的两个极值点分别为x1x2判断①x1+x2+a②x12+x22+a2③x13+x23+a3是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数g(a)并求出g(a)的最小值;
(3)对于(2)中的g(a),设H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,试比较|H(m)-H(n)|与|em-en|(e为自然对数的底)的大小,并证明.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.