当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知定义在R上的函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-25.(Ⅰ)求f(x)的解析式...
题目
题型:解答题难度:一般来源:不详
已知定义在R上的函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-
2
5

(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,使得此两点处的切线互相垂直?试证明你的结论;
(Ⅲ)若x1,x2∈[-1,1]时,求证:|f (x1)-f (x2)|≤
4
5
答案
(Ⅰ)∵函数f(x)的图象关于原点对称,
∴f(0)=0,即4d=0,∴d=0
又f(-1)=-f(1),
即-a-2b-c=-a+2b-c,
∴b=0
∴f(x)=ax3+cx,f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-
2
5

∴3a+c=0且 a+c=-
2
5

解得a=
1
5
,c=-
3
5

∴f(x)=
1
5
x3-
3
5
x
…4
(Ⅱ)当x∈[-1,1]时,图象上不存在这样的两点使得结论成立.
假设图象上存在两点A(x1,y1),B(x2,y2),使得过此两点处的切线互相垂直,
则由f′(x)=
3
5
(x2-1)知两点处的切线斜率分别为k1=
3
5
(
x21
-1)
,k2=
3
5
(
x22
-1)
,且
9
25
(
x21
-1)(
x22
-1)
=1             (*)
∵x1,x2∈[-1,1],
x21
-1≤0,
x22
-1≤0
∴(
x21
-1)(
x22
-1)≥0 此与(*)矛盾,故假设不成立  …(8分)(文12分)
(Ⅲ)证明:f′(x)=
3
5
(x2-1),令f′(x)=0,得x=±1
∴x∈(-∞,-1)或x∈(1,+∞)时,f′(x)>0,x∈(-1,1)时,f′(x)<0
∴f(x)在[-1,1]上是减函数,且fmax(x)=f(-1)=
2
5
,fmin(x)=f(1)=-
2
5

∴在[-1,1]上|f(x)|≤
2
5
,于是x1,x2∈[-1,1]时,
|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤
2
5
+
2
5
=
4
5
…(12分)
核心考点
试题【已知定义在R上的函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-25.(Ⅰ)求f(x)的解析式】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设函数f(x)是定义在R上的奇函数,并且f(x+2)=f(x),当0≤x≤1时,有f(x)=x,则f(3.5)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于(  )
A.2B.-2C.±2D.0
题型:单选题难度:简单| 查看答案
若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A.ex-e-xB.
1
2
(ex+e-x
C.
1
2
(e-x-ex
D.
1
2
(ex-e-x
题型:单选题难度:简单| 查看答案
设f(x)是以3为周期的周期函数,且x∈(0,3]时f(x)=lgx,N是y=f(x)图象上的动点,


MN
=(2
,10),则以M点的轨迹为图象的函数在(1,4]上的解析式为(  )
A.g(x)=lg(x-1)-10,x∈(1,4]B.g(x)=lg(x-1)+10,x∈(1,4]
C.g(x)=lg(x-5)+10,x∈(1,4]D.g(x)=lg(x+2)-10,x∈(1,4]
题型:单选题难度:一般| 查看答案
已知函数f(x)=x3-3|x-a|+λ•sin(π•x),其中a,λ∈R;
(1)当a=0时,求f(1)的值并判断函数f(x)的奇偶性;
(2)当a=0时,若函数y=f(x)的图象在x=1处的切线经过坐标原点,求λ的值;
(3)当λ=0时,求函数f(x)在[0,2]上的最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.